Friday, December 27, 2024

Trying out vector embeddings

newsSum is a Google App Engine application that bundle articles from different news sources. To try out ML embeddings, I decided to add a suggestions service.


High-level idea



  • There will be no changes to the backend of "newssum". The suggestion service "newssum-sug" will be implemented as a separate service
  • The frontend of "newssum" will check if the suggestion service "newssum-sug" is available. If so, it will allow the user to expand an article and query the suggestion service for additional information to display


Implementation of the suggestion service

  • Technically, "newssum-sug" could gather suggestions from any sources (e.g. Google search results, a Youtube video etc). But for now, it will process articles from selected "newssum" sources. So, there will be scheduled tasks to collect articles from "newssum" and prepare them for searching.
  • Vector embeddings will be used to find similar articles. A machine learning model is used to turn a news headline into a vector of numbers. When a query comes in, an embedding will also be generated from that query. By comparing the distance between vectors, we could find articles that are related to the query.
  • The embeddings generated during batch processing are stored in a vector database. The database will also provide the mechanism for searching vectors by distance.
  • Since "newssum" is for current news only, embeddings will only be kept for 2 days.
  • The suggestion service can also be used for free-text search. But for now, the frontend only uses it for article suggestions.

While "newssum" is open source, the "newssum-sug" service is still under development in closed source. But the basic functionality has been integrated and available on the demo site.

No comments:

Post a Comment